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ANALYSIS OF MARS ENTRY WITH CONSIDERATION OF 

SEPAWlTION AND LINE-OF-SIGHT RELAY COMMUNICATION 

FOR BUS-CAPSULE COMBINATIONS 

By E. Brian Pritchard and Fdwin F. Harrison 
Langley Research Center 

SUMMARY 

An analyt ical  study of the deceleration loads, stagnation-point heating, 
communication time a f t e r  blackout, and parachute-deployment conditions encoun- 
te red  during Mars atzospheric entry was conducted f o r  several Mars model atmos- 
pheres with surface pressures from 10 t o  40 mill ibars.  Both steep and shallow 
entry angles were considered f o r  entry velocit ies from 20 000 t o  32 000 f p s ,  
f o r  values of the  b a l l i s t i c  parameter from approximately 0.1 t o  1 .0  slug/ft2, 
and values of l i f t -drag  r a t i o  of 0 and 0.5. The requirements f o r  separation 
and line-of-sight relay communication f o r  t h e  combinations of a fly-by bus and 
entry capsule were studied i n  terms of capsule aerodynamics, Martian atmospheric 
structure, separation distance, bus periapsis distance, hyperbolic excess veloc- 
i ty ,  and the angle a t  which the separation-velocity increment w a s  applied. 

The r e su l t s  indicate tha t  f o r  a ver t ica l  entry requirement the maximum 
allowable value of the  b a l l i s t i c  parameter i s  l e s s  than 0.2 slug/ft2 for  
unmanned b a l l i s t i c  entry vehicles capable of e i ther  communication with the Earth 
between blackout and Mars impact f o r  60 seconds o r  a sof t  landing with parachute- 
deployment veloci t ies  of 1000 fps o r  less .  The u t i l i z a t i o n  of a vehicle with a 
l i f t -drag  r a t i o  of 0.5 w a s  shown t o  allow a significant increase i n  the maximum 
allowable b a l l i s t i c  parameter t o  values of about 0.3 slug/ft2.  If a terminal 
guidance system capable of obtaining entry corridors of about 5 O  is  available 
f o r  such missions, it may be possible t o  extend the maximum allowable values of 
t he  b a l l i s t i c  parameter t o  about 0.66 and 0.9 slug/ft2 f o r  the  b a l l i s t i c  and 
l i f t i n g  vehicles, respectively . 

Separation of the  entry capsule from the fly-by bus at a distance of 
300 Mars radii from the planet requires a separation-velocity increment from 
about 100 t o  300 fps. For steep entry, an effective line-of-sight communica- 
t i o n  can be maintained from the end of blackout t o  capsule impact with an 
increase i n  the separation-velocity increment of about 15 fps  or  l e s s .  
increase i n  t.hi: ve1nQit.y is shnvn t n  be reqiuired fnr snft.-ln-ndA~g vehicles 
requiring ve r t i ca l  entry with surface lifetimes of approximately 1 hour i f  a 

approximately two-thirds by employing shallow entry. 

A large 

relay communications l i nk  is  employed. This velocity increment 



INTRODUCTION 

Prior t o  any manned Mars landing mission it w i l l  be necessary t o  accom- 
p l i sh  successfully an unmanned Mars mission program i n  order t o  define the 
characterist ics of the Martian atmosphere and surface. 
obtained from such an unmanned program i s  necessary t o  the design of a safe and 
eff ic ient  manned entry module. 
determine the existence of l i f e  on the planet. 

The information t o  be 

An additional objective w i l l  be an attempt t o  

Many studies of the Mars entry problem have been conducted fo r  the model 
atmospheres with surface pressures from 80 t o  120 mill ibars which, f o r  many 
years, were thought t o  be representative of the Martian atmosphere. However, 
t h e  recent findings of Kaplan ( r e f .  l), indicative of a Mars atmospheric surface 
pressure from 10 t o  40 millibars, have necessitated new investigations of the 
Mars entry problem. See, f o r  example, references 2 and 3, which a re  primarily 
concerned with the  ve r t i ca l  entry of b a l l i s t i c  capsules. 

It i s  the purpose of t h i s  study t o  investigate Mars atmospheric entry from 
shallow entry t o  ve r t i ca l  entry with the objective of defining the entry- 
vehicle requirements based on the present knowledge of the Martian atmosphere. 
Although the primary emphasis i s  placed on b a l l i s t i c  entry, the e f fec ts  of a 
l i f t i n g  capabili ty on the entry-capsule requirements a re  assessed f o r  a vehicle 
having a lift-drag r a t i o  of 0.5. The resu l t s  were obtained fo r  values of the 
b a l l i s t i c  parameter from 0.1 t o  1.0 slug/ft2. 

"he primary assumptions u t i l i zed  f o r  t h i s  analysis were tha t  the planet i s  
spherical and nonrotating and tha t  the atmosphere could be approximated by a 
constant lapse ra te  of the troposphere and an isothermal stratosphere extending 
from the tropopause t o  the a l t i t ude  at  which entry i s  in i t i a t ed .  
it i s  a rb i t r a r i l y  assumed f o r  t he  purposes of t h i s  study tha t  terminal guidance 
systems could be developed with the capabili ty of r e s t r i c t ing  the Mars entry 
corridor t o  about 50 or 100. It i s  realized, of course, t ha t  some additional 
spacecraft weight would be required t o  a t t a i n  t h i s  capabili ty.  Thus, the 
weight available f o r  the entry-capsule system would be reduced t o  some extent 
and trade-off studies would become necessary i n  order t o  define the best sys- 
tem or  mode. 

I n  addition, 

It is  also the  purpose of t he  present report t o  analyze the separation and 
the  maintenance of line-of-sight contact of those missions involving the com- 
bination of a fly-by bus and an entry capsule. 
able f o r  early missions, as pointed out i n  reference 4 where some of the gen- 
e r a l  problems a re  discussed. 
c les  and inject ion of the entry capsule onto a Martian impacting t ra jec tory  are  
assessed i n  terms of the separation-velocity increment. 
metric variations i n  the time of separation, angle of separation, and point of 
closest  passage of the bus t o  the  planet on the  separation velocity require- 
ments are a l so  defined. 

This combination may be desir- 

The requirements f o r  separation of the two vehi- 

The effects  of para- 

The choice of a relay o r  a d i rec t  communications l i n k  between the capsule 
and Earth depends on many fac tors  such as the par t icu lar  mission objectives and 
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res t r ic t ions .  Thus, i n  order t o  maintain f lex ib i l i ty ,  no attempt i s  made i n  
t h i s  report t o  define the missions for  which the relay system would be superior 
t o  the  d i rec t  system. Rather, the approach taken here i s  t o  define only the 
conditions f o r  which a c lear  l i n e  of sight between the bus and the capsule may 
be maintained t o  capsule impact fo r  relay-communication purposes. Furthermore, 
it was desired t o  determine the additional constraints placed on two typical  
missions i f  a short surface l i f e  were required of the capsule. 

SYMBOLS 

cross-sectional area of capsule 

semimajor axis of a hyperbolic t ra jectory 

drag coefficient 

eccentr ic i ty  of a hyperbolic t ra jectory 

deceleration load 

loca l  acceleration due t o  gravity 

acceleration due t o  gravity a t  Ear th ' s  surface 

a l t i t ude  

l i f t -drag  r a t i o  

mass of capsule 

b a l l i s t i c  parameter 

Mars atmospheric surface pressure 

semilatus rectum of a hyperbolic t ra jectory 

convective stagnation-point heat load 

radiat ive stagnation-point heat load 

convective stagnation-point heating r a t e  

r&diiii,ti-ve stq+pia,tion-point hes t i rg  r&e 

capsule nose radius 

radial distance t o  center of Mars 
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time 

veloci ty  

veloci ty  decrement applied t o  bus at separation 

separation velocity increment required t o  in j ec t  entry capsule on 
desired course of a specified entry angle ( f i g .  1) 

fl ight-path angle re la t ive  t o  local horizontal  

entry corridor obtainable w i t h  terminal guidance 

difference i n  fl ight-path angles of bus and capsule at  separation 
( f ig .  1) 

range angle measured from point of entry 

o r b i t a l  cen t ra l  angle ( f ig .  1) 

separation angle between bus and capsule ( f i g .  1) 

Mars gravi ta t ional  constant, 1.5144 x 165 ft3/sec2 

atmospheric density 

Subscripts: 

b bus 

C capsule 

d parachute-deployment conditions 

E 

h 

i impact conditions 

max maximum 

min minimum 

0 overshoot boundary 

P per iapsis  conditions 

S separation 

m conditions where r i s  inf in i te  

4 

entry conditions at an a l t i t ude  of 360 000 feet 

entry conditions at  any a rb i t r a ry  a l t i t u d e  



ANALYSIS 

Separation 

Separation of a fly-by bus and an entry capsule must occur at  re la t ively 
large distances from the planet i n  order t o  insure tha t  separation veloci t ies  
are not excessive, w i t h  the  r e s t r i c t ion  t h a t  the fly-by bus must not impact the 
planet. A primary concern of the present study w a s ,  therefore, the determina- 
t i o n  of the velocity increment 
the desired course of entry at a given angle The geometry and parameters 
associated w i t h  t h i s  separation maneuver, as well as the bus and capsule tra- 
jectories,  a re  presented i n  schematic form i n  figure 1. 

AVs,c required t o  in j ec t  an entry capsule on 

rE. 

It i s  assumed i n  t h i s  phase of the analysis tha t  t he  vehicles are  acted 
upon only by the Martian gravi ta t ional  f i e l d  and that the  vehicle t r a j ec to r i e s  
a re  hyperbolic i n  form ( the e f fec t  of the  solar gravi ta t ional  f ie ld  on the tra- 
jec tor ies  i s  discussed i n  the section en t i t l ed  "Results and Discussion") 

I n  order t o  define the  t ra jec tor ies  of the fly-by bus and the  entry cap- 
sule, a number of conditions a re  required. 
required f o r  the bus t ra jec tory  are: 

(See f i g .  1.) The conditions 

(1) Vehicle hyperbolic excess velocity V, at Mars 

(2 )  Distance from Mars at which vehicles separate rs 

( 3 )  Periapsis distance of fly-by t ra jectory rp,b 

The conditions required f o r  the capsule t ra jec tor ies  are: 

(1) Distance from Mars at which vehicles separate rs 

(2) Capsule entry angle 

( 3 )  Distance from Mars center t o  edge of atmosphere 

( 4 )  Resultant velocity of the  capsule at separation 

I n  the  present analysis, a s e t  of nominal conditions w a s  selected, and 
each parameter w a s  systematically varied about the nominal value t o  determine 
i t s  influence on the problem. 

r E  

VS+ 

These nominal conditions were: 

= 2.5 ~ a r s  radii (5283 in t .  s t a tu t e  miles) 'P, b 

rs = 300 Mars radii (633 900 i n t .  s t a tu t e  miles) 

V, = 20 323 fps 
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As = 90' 

The equations necessary t o  the solution of the problem are  very well known 
(e.g., see re f .  5 )  and, therefore, are presented i n  the  appendix w i t h  a minimum 
of discussion. 

Entry 

I n  the  analysis of atmospheric entry, two factors  are  of primary interest ;  
these are the veloci t ies  with which a spacecraft might be reasonably expected 
t o  encounter a planet, and the physical character is t ics  of the planet and i t s  
atmosphere. 

The velocity at  which a spacecraft encounters the  atmosphere of Mars i s  
dependent on the t r i p  time and the location of Mars i n  i t s  orbit ,  as indicated 
by figure 2. 
19 000 fps  are  possible f o r  long t r i p  times, short t r i p  times are highly desir-  
able from the standpoint of r e l i a b i l i t y  and communications. On t h i s  basis, a 
nominal entry velocity of 26 000 fps  w a s  selected f o r  study. 
variation i n  entry velocity were obtained, however, by considering, t o  a l i m -  
i t e d  extent, the  additional entry veloci t ies  of 20 000 f p s  and 32 000 fps.  

(See r e f .  6.) Although minimum veloci t ies  as low as about 

The e f fec ts  of a 

The Martian model atmospheres employed i n  t h i s  study ( f ig .  3 )  represent 
the resul ts  of the analysis of reference 7, which i s  based on the  observations 
of Kaplan ( r e f .  1). Reference 7 recommends tha t  these models be used i n  future 
studies, sponsored by the NASA, of Mars entry i n  order t o  f a c i l i t a t e  the inter-  
pretation of the resu l t s  of such studies.  Since any vehicle design must be 
based on the extreme conditions represented by the upper and lower atmospheres 
(40 and 10 millibars, respectively), the mean model atmosphere w a s  not u t i l i zed  
i n  t h i s  investigation O f  the  two lowest atmospheres shown i n  f igure 3(b),  the  
primary emphasis has been placed on the  atmosphere having a surface temperature 
of 7400 R (model atmosphere 4 )  since t h i s  temperature has been postulated by a 
number of astronomers t o  be the equatorial  dayside temperature. The advantages 
of dayside landings a re  numerous, and it appears reasonable tha t  an entry- 
capsule mission would be designed on such a basis.  

Entry is  assumed t o  be i n i t i a t e d  at  an a l t i t ude  of 360 000 f e e t  for  the 
low-density atmospheres where the  magnitude of the atmospheric density i s  
approximately equivalent t o  the  Earth's atmosphere at  an a l t i t ude  of 
400 000 f e e t .  A specif ic  entry a l t i t ude  i s  required since the free-space tra- 
jectories and the  entry t r a j ec to r i e s  must be matched at  the a l t i t ude  where 
atmospheric e f fec ts  become of importance. Figure 3 indicates t ha t  atmospheric 
e f fec ts  become important a t  much higher a l t i t udes  fo r  model atmospheres 1 and 2 
than f o r  model atmospheres 3 and 4. Thus, the  entry and free-space t r a j ec to r i e s  
must be matched at  a l t i tudes  i n  excess of 700 000 fee t  f o r  model atmosphere 1. 
I n  order t o  compare the  resu l t s  obtained f o r  entry in to  the several  atmospheres 
considered, it i s  necessary t o  r e l a t e  the en t r ies  t o  a common se t  of i n i t i a l  
conditions (i .e. ,  i n i t i a l  entry velocity and entry angle). 
of 360 000 fee t  was chosen as the a l t i t ude  at  which the  entry angle i s  t o  be 
defined f o r  a l l  atmospheres. 

Thus, an a l t i t ude  

The equivalent vacuum entry angle a t  an a l t i t ude  
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of 360 000 fee t  i s  obtained i n  terms of the entry angle a t  the a l t i tude  for  
which atmospheric e f fec ts  are  first encountered from the relat ion 

- 1 where VE i s  the  r a t i o  of the entry velocity t o  the loca l  c i rcular  velocity 
~ and i s  approximately constant f o r  the  rarge of entry a l t i tudes  considered. 

~ 

I n  the present analysis, t he  overshoot boundary i s  defined by entry a t  
tha t  angle f o r  which the entry capsule pul l s  out and l'skipsll t o  a maxim alti- 
tude equal t o  the  i n i t i a l  entry a l t i tude  but does not ex i t  the atmosphere. 
l imitat ion or  def ini t ion has been placed on the undershoot boundary since 
unmanned capsules could be designed f o r  ver t ical  entry. 

No 

~ 

The t ra jec tor ies  traversed by the entry capsule during atmospheric f l i gh t  
were obtained by nvmerical integration with a high-speed d i g i t a l  computer of 
t h e  well-known equations of motion i n  the  following form: 

and 

doc v - = -  
d t  r 

I n  the  present study, both b a l l i s t i c  
sidered. It i s  assumed tha t  control over 

cos y 

and l i f t i n g  vehicles have been con- 
the l i f t i n g  vehicle i s  asserted only 

t o  the  extent t h a t  the lift i s  always directed upward (posi t ive)  with respect 
t o  t h e  planet and the pi tch and r o l l  a t t i tudes remain unchanged during entry. 
This assumption i s  important since the full potential  of the use of l i f t  can 
not be realized because of the lack of a maneuvering capability. However, fo r  
s implici ty  of t h e  entry capsule, only a constant l i f t  coefficient was selected 
f o r  study with t h e  real izat ion t h a t  la te r ,  more sophisticated entry vehicles 
could u t i l i z e  lift modulation or  control t o  a f a r  greater  advantage. 

The purpose here i s  only t o  determine whether a simple l i f t i n g  entry cap- 
sule can a l l ev ia t e  the  two primary problems associated with the entry of ear ly  
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unmanned vehicles i n t o  a shallow planetary atmosphere. 
t h e  communication-time problem f o r  impacting capsules and the  parachute- 
deployment problem f o r  soft-landing capsules. 
study t o  minimize the  heating loads o r  heating rates ,  t he  r e su l t  of which could 
be obtained i f  the l i f t  were controlled during entry. Thus, i n  order t o  of fse t  
t he  tendency of t he  vehicle with constant l i f t  coefficient t o  skip out of t he  
atmosphere, t h e  present use of l i f t  w i l l  require much steeper entry at  the  
overshoot boundary than e i t h e r  the  b a l l i s t i c  vehicle o r  t he  vehicle with con- 
t r o l l e d  l i f t .  

These two problems a r e  

It i s  not the purpose of t h i s  

Heating 

I n  a study such as th i s ,  it i s  highly desirable t o  maintain a general i ty  
For t h i s  reason, only stagnation-point heating r a t e s  and loads of resu l t s .  

have been assessed. 

I n  reference 8 it i s  indicated t h a t  the  stagnation-point convective heating 
r a t e s  may be approximated by the  same equations f o r  both Mars and Earth atmos- 
pheric entry. Thus, i n  t h i s  study the  following expression was used: 

where & is given i n  u n i t s  of Btu/ftZ-sec and RN, i n  un i t s  of f e e t .  

I n  an attempt t o  define the  radiat ive stagnation-point heating, the  
experimental results obtained i n  reference 9 were analyzed f o r  a hypothetical 
atmosphere having a composition of 10.5 percent C02 and 89.5 percent N2. 
i s  assumed f o r  t h i s  analysis t h a t  t he  r a t i o  of the  shock detachment distance t o  
the  nose radius has a value of 0.045. 
density exponent i s  u t i l i z e d  i n  the analysis; a l so  pointed out i s  the  f a c t  t h a t  
nonequilibrium radiat ion heating may occur f o r  shallow entry. I n  the present 
analysis, a density exponent of 0.85 i s  chosen i n  an attempt t o  account, a t  
l e a s t  par t ia l ly ,  f o r  both nonequilibrium and ablation-product radiation. The 
re su l t s  presented here should therefore be considered t o  be only a rough e s t i -  
mate because of t he  r e s t r i c t ed  range of va l id i ty  of the experimental data  on 
which they are  based. 
stagnation-point heating is: 

It 

I n  reference 8 a value of uni ty  f o r  the 

The equation obtained i n  t h i s  analysis f o r  t he  radiat ive 

7-25 - 4r = (2.34 x 
RN 

where ir is  i n  terms of Btu/ft2-sec. 

Of course, much more def in i t ive  experimental and theo re t i ca l  analyses a re  
required i n  order t o  resolve the  present uncertaint ies  regarding the  radiative- 
heating environment fo r  Mars atmospheric entry. 
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Communi cat  ion  

An important requirement of the  relay communication system between the  bus 
and capsule i s  t h a t  line-of-sight transmission be available between the  two 
vehicles.  The l i m i t i n g  condition f o r  line-of-sight communication i s  defined i n  
the  present analysis as the condition f o r  which the  angle between the  planetary 
radius vector and the  transmission l i n e  between the  bus and capsule i s  equal t o  
900 a t  impact of the  capsule on the  Martian surface. 
is, of course, t h a t  the planet be spherical  and nonrotating. 

A necessary assumption 

The procedure f o r  the  determination of those conditions f o r  which a c l ea r  
line-of-sight transmission i s  available t o  capsule impact i s  as follows: 

(1) Select values f o r  yE, - and L/D. The time of f l i g h t  from separa- 

t i o n  t o  entry may be computed from equation (A8)  or (Al3). 
t o  impact i s  obtained from the  numerical integration of the well-known equa- 
t i ons  of motion on a high-speed d i g i t a l  computer. 
define the  angle 

CDA’ 
The time from entry 

It i s  a l so  necessary t o  
Bc,i from the  general equation (A7)  and the entry program. 

( 2 )  For t h i s  t i m e  of f l i g h t  from separation t o  impact of the  capsule, it 
i s  necessary t o  determine the  corresponding location of the bus. 
i s  obtained i n  terms of @ and q,, corresponding t o  the  f l i g h t  t i m e  computed 
i n  s tep  (1). 

Its  locat ion 

( 3 )  Obtain a value of 

(4 )  Plot  t h i s  value against 

& = ec, i  - 8b. 

Q f o r  each entry angle and entry vehicle t o  
obtain a carpet plot, as shown i n  sketch (a). 

4 

m 
CnA 
- 

( 5 )  The l imi t ing  line-of-sight condition i s  defined from geometry by 
rc i he = c0s-l (dashed l i n e  i n  sketch (a)) .  
rb 
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(6) The conditions t o  t h e  l e f t  of the dashed l i n e  i n  sketch (a)  allow 
line-of-sight transmission between t h e  fly-by bus and t h e  capsule at impact; 
t he  conditions t o  the r ight  do not. 

Curves may then be obtained of plot ted against  yE f o r  various 
CDA 

separation conditions. Thus, t he  lowest value of -E may be obtained f o r  
CDA 

which relay communication between the  fly-by bus and the entry capsule i s  avail-  
able u n t i l  the  point of impact of the  capsule with the  planet surface. 

An important assumption i n  the  preceding analysis i s  tha t  t he  planet is  
spherical and nonrotating. 
about l’jO per hour, it i s  apparent t h a t  the e f fec t  of planetary rotat ion on the  
problem of line-of-sight re lay communication i s  important i n  the consideration 
of communication time after landing of a capsule. 
par t icular  mission it would be desirable t o  include a more detailed analysis of 
the  line-of-sight problem which would consider probable landing s i t e s  as w e l l  
as t h e  effects  of planetary rotat ion.  

Since a point on the  Martian equator rotates  at  

Thus, i n  the  study of a 

RESULTS AND DISCUSSION 

Separation 

There are many factors  t o  be considered i n  the  def in i t ion  of the  t i m e ,  o r  
point, a t  which separation of an entry capsule from the  fly-by bus should be 
accomplished. 
separation and before entry i n  order that reor ientat ion of t h e  spacecraft, 
check-out of t h e  instrumentation, and t e s t ing  of t he  communications l i nk  may be 
completed. A typ ica l  time h is tory  of t he  bus t ra jec tory  ( f ig .  4) indicates 
t h a t  f o r  reasonable separation distances from about 100 t o  700 Mars r a d i i  
(ref. 10)  adequate t i m e  i s  probably available without fur ther  r e s t r i c t ing  the 
problem. O f  primary importance, then, i s  the  e f f ec t  of the  t ra jec tory  fac tors  
on t h e  propulsive-velocity increment required t o  carry out t he  separation 
maneuver. 
hyperbolic excess velocity, separation angle, and entry angle on the  required 
separation velocity have been determined and are presented i n  f igures  5 t o  8. 

One prime fac tor  i s  t h a t  adequate time must be available after 

Thus, t he  e f f ec t s  of separation distance, bus per iapsis  distance, 

The e f fec t  of the  separation distance (i.e.,  distance from the  planet t o  
the  spacecraft at the t i m e  of separation) i s  shown i n  f igure 5 .  The required 
increase i n  separation veloci ty  i s  approximately inversely proportional t o  the  
decrease i n  the  available separation distance a t ta ined  f o r  a par t icu lar  value 
of entry angle. The e f fec t  of entry angle on the  propulsive velocity required 
f o r  t he  separation maneuver i s  shown t o  be large; t he  separation velocity must 
be doubled f o r  an  increase i n  entry angle from loo t o  llOo. 

It should be noted a t  t h i s  point tha t ,  f o r  an ac tua l  mission, the spread 
i n  entry angle w i l l  be due t o  a combination of uncertaint ies  i n  the knowledge 
of the bus periapsis distance, separation distance, and separation angle, a l l  

10 



of which depend on the  accuracy of the guidance system. 
it w a s  considered more desirable t o  investigate each parameter i n  tu rn  and 
determine i t s  effect  on the separation problem rather  than t o  attempt an e r ror  
analysis necessarily based on state-of-the-art or hardware considerations. 

In  the present study 

It should a l so  be noted tha t  the radius of the Martian sphere of ac t iv i ty  
f o r  t ra jectory considerations has been estimated at  about 170 Mars radii. 
the  va l id i ty  of the assumption tha t  the spacecraft a r e  influenced only by the 
Martian gravi ta t ional  f i e l d  i s  open t o  question. Preliminary estimates indi- 
cate, however, t ha t  t he  solar  influence, while s ignif icant  i n  single vehicle 
considerations, may be neglected when considering the motion of one vehicle 
re la t ive  t o  another f o r  the range of conditions considered i n  t h i s  study. For 
instance, a m a x i m u m  e r ror  i n  the  separation-velocity increment between the  bus 
and capsule of about 2 percent i s  obtained by neglecting the solar  influence. 

Thus, 

Although sma l l  separation veloci t ies  are required f o r  separation at 
extreme distances from the  planet, the position of the vehicle, with respect 
t o  Mars, i s  known t o  a l e s se r  degree of accuracy than f o r  vehicles near Mars. 
Hence, f o r  subsequent results, a nominal separation distance of 300 Mars radi i  
w a s  selected. This distance corresponds t o  a t r ave l  time of about 1.9 days 
from separation t o  Mars encounter ( f ig .  4 )  and requires separation veloci t ies  
from 100 t o  220 fps  f o r  the entry-angle range considered. 

The e f fec t  of bus periapsis distance on the separation velocity require- 
ments i s  shown i n  figure 6 f o r  the nominal separation distance of 300 Mars rad i i  
and a typica l  entry velocity of 26 000 fps  with separation normal t o  the  i n i -  
t i a l  f l i g h t  path. 
i n  large changes i n  entry angle f o r  a given separation velocity. 
t h a t  the  e f fec t  of entry angle on the velocity requirement, f o r  a given value 
Of rp,b, i s  greatest  f o r  the closest passage t o  the  planet. 

Small changes i n  bus periapsis distance are  shown t o  resu l t  
Note a l so  

Another important fac tor  influencing the separation-velocity requirement 
i s  the  hyperbolic excess velocity, which dictates  the vehicle velocity at  the  
separation point. 
parameter which i s  equivalent t o  a variation i n  nominal entry velocity from 
20 000 t o  32 000 fps. 
separation velocity.  For the range of V, considered, it i s  shown tha t  the  
e f fec ts  of entry angle (from loo t o  l l O o )  are s l i gh t ly  greater than the ef fec ts  
of hyperbolic excess velocity. 

Figure 7 demonstrates the e f fec t  of a variation i n  t h i s  

Reductions i n  V, are shown t o  allow reductions i n  the 

The results of figures 5 t o  7 were obtained f o r  a separation angle As 
The ef fec t  of t h i s  parameter w a s  investigated i n  some detai l ,  and the  

A s  shown, m i n i m  
A s  

of 
90'. 
r e su l t s  are presented i n  figure 8 fo r  the nominal. conditions. 
separation velocity i s  obtained for  a separation angle of about go0. 
expected, a s l i g h t  var ia t ion i n  the minimum point ( l e s s  than 20) with entry 
angle i s  obtained. Since the  effect  of As on the separation velocity i s  large 
a t  angles much away from 900, it i s  apparent t ha t  the separation angle should 
be maintained near 900. The r a t i o  of the separation veloci t ies  f o r  two given 
entry angles i s  essent ia l ly  independent of As. For instance, the  r a t i o  of the 
separation veloci ty  required for  an entry angle of 100 t o  the  separation veloc- 
i t y  required f o r  an entry angle of goo i s  about 1.9. 
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The ef fec ts  of the  primary factors  influencing the  separation velocity 
requirement which have been demonstrated i n  figures 5 t o  8 indicate tha t  the  
most important factor  i s  the  location of the spacecraft with respect t o  Mars 
and, i n  particular, 
separation-velocity increment is  applied. 

rp,b. Also of importance i s  the  angle at  which the  

Overshoot Boundary 

I n  t h i s  study of Mars atmospheric entry it has been assumed tha t  unmanned 
vehicles, capable of ve r t i ca l  entry, a r e  feasible.  Consequently, an under- 
shoot boundary i s  not required. The overshoot boundary, defined by entry at  
the  angle f o r  which the  vehicle enters, pulls out, and skips t o  an alti- 
tude equal t o  the assumed height of the sensible atmosphere, i s  shown i n  the  
sketch i n  f igure 9.  The actual  values of the overshoot entry angle are pre- 
sented i n  f igure 9 f o r  the  range of J?L of in te res t .  Only the two lower 

atmospheric models are considered since the overshoot boundary must logical ly  
be defined by the  thinner atmospheres. A s  one might anticipate,  lower values 
of t he  overshoot entry angle a re  obtained f o r  atmosphere 4 than f o r  atmos- 
phere 3 because of the higher densi t ies  a t  high a l t i tudes  f o r  th i s  atmospheric- 
model. Note also tha t  the e f fec t  of -!!- a t  l ea s t  i n  the range investigated, 

i s  relat ively minor. 

yo 

CDA 

CDA' 

The ef fec ts  of entry velocity and l i f t  are presented only f o r  atmosphere 4, 
the  low-density dayside model atmosphere. A s  expected, an increase i n  entry 
velocity accompanies an increase i n  the  overshoot-boundary entry angle. The 
u t i l i za t ion  of a l i f t i n g  vehicle (L/D = 0.5) is  shown t o  increase t h i s  boundary 
greatly.  If, however, modulation of the  l i f t  during entry were allowed, the 
overshoot entry angle f o r  the l i f t i n g  case shown would be somewhat l e s s  than 
tha t  f o r  the b a l l i s t i c  entry case. 

The values of -yo presented i n  figure 9 are  used hereafter i n  discussing 
t h e  effects  of a terminal guidance capabili ty u t i l i zed  t o  obtain some nominal 
entry corridor. A s  shown i n  the  sketch i n  figure 9, the  entry corridor may be 
defined i n  terms of &E and i s  always measured from the overshoot boundary. 
Thus, when a nominal entry corridor of AYE is  considered, t he  range of entry 
angle which must be considered is  from -yo t o  -(yo + ATE). The resu l t s  of 
t h i s  study are  presented f o r  entry at the angles -yo and -(yo + ATE) f o r  
terminally guided vehicles and a t  the angles 
terminal guidance. 

-yo and -90' fo r  vehicles without 

Deceleration Loads 

The maximum deceleration loads encountered during Mars atmospheric entry 
a re  presented i n  figures 10 t o  12. F i r s t ,  consider the  effect  of model atmos- 
phere on the maximum deceleration loads f o r  the b a l l i s t i c  entry case shown i n  
f igure 10. Here, it is seen that the  la rges t  effect  of m o d e l  atmosphere is  
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exhibited f o r  the  vertical-entry case. 
solutions are available f o r  the determination of the  maximum deceleration load 
encountered during b a l l i s t i c  entry a t  steep angles in to  exponential atmospheres. 
Reference ll, f o r  example, points out that, i f  the  m a x i m  deceleration loads 
a re  encountered i n  the isothermal layer of the atmosphere, the m a x i m u m  loads 
w i l l  be independent of the  value of the b a l l i s t i c  parameter 

m deceleration loads w i l l  then be affected by - 
t i o n  occurs i n  the  troposphere. For the vertical-entry case, as shown i n  f ig-  
ure 10, the peak deceleration loads occur within the troposphere f o r  model 
atmosphere 4 and for  the range of -L considered. For model atmosphere 3, the  

peak deceleration loads occur within the troposphere f o r  

and within the  stratosphere f o r  

atmosphere 1, t h e  maximum deceleration occurs i n  the  stratosphere f o r  the range 

It should be noted tha t  analyt ical  

- 
CDA' 

Themaximum 

only i f  the  maximum decelera- 
CDA 

CDA 
A> 0.15 slug/ft* 
CDA 

m 
CDA 
- < 0.15 slug/ftg. In  the case of model 

of - shown and i s  therefore only a function of the density gradient, entry w 
velocity, and entry angle. The difference between the curves f o r  atmospheres 3 
and 4 i s  predominantly due t o  the  differences i n  the effective density gradient 
at  the point of maximum deceleration. 

If a terminal guidance capability i s  available t o  the spacecraft, the  
maximum deceleration loads can obviously be greatly reduced. 
therefore, it has been a rb i t r a r i l y  assumed for  comparative purposes that sys- 
tems could be developed with the capabili ty of res t r ic t ing  the vacuum corridor 
t o  5 O  or  loo at an a l t i tude  of 360 000 fee t .  
guidance i n  the reduct'ion of maximum deceleration i s  i l l u s t r a t ed  i n  figure 10 by 
the  curves f o r  a nominal corridor width WE 
boundary. The e f fec t  of - on is  also reduced somewhat by entry- 

corridor reduction. 

I n  t h i s  study, 

The effectiveness of terminal 

of 5 O  measured from the overshoot 

CDA 

The influence of both the  degree of terminal guidance and the l i f t -drag  
r a t i o  on the  m a x i m u m  deceleration loads i s  presented i n  figure 11 f o r  atmos- 
phere model 4. For ve r t i ca l  entry, increasing the  L/D of the capsule from 0 
t o  0.7 r e su l t s  i n  only a moderate increase i n  Gax. However, f o r  a corridor 
width of e i the r  30 o r  100, the  same increase in  
i n  the  maximum deceleration loads. This effect is  produced by the relat ively 
steep overshoot entry angle required f o r  t he  capsule with 

m reduction i n  t h e  influence of - on by decreasing the corridor width 

i s  a l so  demonstrated i n  figure 11. 

L/D resu l t s  i n  large increases 

L/D = 0.5. The 

CDA 

The f i n a l  factor  influencing the magnitude of G m a  i s  the  entry velocity. 
As shown i n  figure 12, t he  deceleration loads are increased by an increase i n  
the  entry velocity.  The influence of entry velocity i s  seen here t o  be more 



pronounced f o r  low values of 

at  higher a l t i tudes  where the effective density gradient i s  greater.  

- inasmuch as the m a x i m u m  deceleration occurs 
CDA 

I n  application t o  manned entry, it appears, f o r  the vehicles considered 
here, that  reducing the entry velocity may be a more effect ive means of reducing 
the deceleration loads t o  human tolerances than decreasing the entry corridor, 
unless very s m a l l  corridors can be attained. It should be pointed out, however, 
t ha t  the overshoot entry angle and therefore the  overshoot-boundary decelera- 
t i o n  loads f o r  the  l i f t i n g  vehicle could be reduced below the overshoot values 
obtained f o r  the b a l l i s t i c  vehicle i f  a l i f t ing  vehicle which has the  capabil- 
i t y  of l i f t  modulation by e i ther  r o l l  o r  pitch control were u t i l i zed .  

Aerodynamic Heating 

A knowledge of both maximum stagnation-point heating ra tes  and t o t a l  heat 
loads is  required fo r  heat-shield design. The resu l t s  of the  present approxi- 
mate heating analysis are presented i n  terms of these quantit ies i n  figures 13 
t o  22. 

First ,  consider the effect  of atmospheric model on the maximum radiative 

A s  one might expect, the atmospheric models with the  
heating rates,  as  shown i n  f igure 13, f o r  both ve r t i ca l  entry and shallow entry 
with terminal guidance. 
steepest density gradient produce the highest heating rates .  
produces lower heating rates  than atmosphere 3 a t  all but the lowest values of 

Atmosphere 4 

- because maximum heating does not occur f o r  entry in to  atmosphere 4 u n t i l  
CDA 
the  capsule has penetrated the isothermal layer  and i s  traveling through the 
troposphere where the average density gradient i s  great ly  reduced. 
reduction i n  the entry corridor great ly  decreases the m a x i m u m  radiative heating 
rate, a well-known effect .  

Also, a 

The ef fec t  of l i f t  on the maximum radiative heating r a t e  i s  presented i n  

That is, the u t i l i za t ion  of a capsule with 
resu l t s  i n  a moderate increase i n  the radiative heating r a t e  f o r  

f igure  14 f o r  atmosphere 4. 
deceleration loads i s  obtained. 
L/D = 0.5 
ver t ica l  entry and i n  a large increase f o r  shallow entry. 
shallow entry i s  essent ia l ly  due t o  the difference i n  the overshoot entry angle 
required f o r  the  b a l l i s t i c  and l i f t i n g  vehicles. Decreasing the corridor width 
i s  also shown t o  reduce the influence of - 
and, as expected, minimum values of - 

A similar e f fec t  t o  tha t  indicated f o r  the m a x i m u m  

This ef fec t  f o r  

on the radiat ive heating ra te  m 
CDA 
resu l t  i n  minimum heating rates. m 

CDA 

Radiative heating rates  are  shown i n  figure 15 t o  increase rapidly with 
increasing entry velocity. Since the heating r a t e  a l so  increases rapidly w i t h  

m - there appears t o  be some poss ib i l i ty  of trading off - for  entry veloc- 
CDA’ CDA 
i t y  while maintaining the same maximum heating ra te .  

A t  the  nominal entry velocity of 26 000 fps, the convective stagnation- 
point heating ra te  i s  indeed the dominant contributor t o  the t o t a l  heating r a t e  
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f o r  a vehicle with a nose radius of 1 foot, as may be seen by comparing f ig-  
ures 16 and 13. 
important role  i n  the def ini t ion of t o t a l  stagnation-point heating ra tes  and 
loads and i n  the  determination of the dominant heating mechanism. 

Of course, the actual value of the  nose radius plays an 

The general. effect  of atmospheric model on the convective heating r a t e  i s  
essent ia l ly  the same as tha t  obtained f o r  the  radiative heating rate. 
reducing the entry corridor t o  5 O  brings about a reduction i n  the m a x i m u m  con- 
vective heating ra te  by only a fac tor  of 2, whereas the radiative heating i s  
reduced by a fac tor  of 3. 
s l i gh t ly  l e s s  influenced by - than was the radiative heating. 

However, 

Also, the convective heating r a t e  i s  shown t o  be 
m 

CDA 

The influence of l i f t  on the convective heating ra tes  i s  shown i n  f ig-  
ure 17 t o  be essent ia l ly  the same as it was on the deceleration loads and 
radiative heating rates .  
L/D = 0.5 
capsule. 
large f o r  the  same reason as discussed previously; t ha t  is, the di'fference 
required i n  the overshoot angle fo r  the b a l l i s t i c  and l i f t i n g  vehicles. T h i s  
figure a l so  indicates a reduction i n  the influence of - on the  convective 

heating ra tes  by a reduction i n  corridor. 

A moderate increase i s  obtained f o r  a capsule w i t h  

For shallow entry, the increase i n  convective heating r a t e  becomes 
t h a t  enters the atmosphere at  goo i n  comparison with a b a l l i s t i c  

CDA 

A comparison of figures 13 and 18 demonstrates t ha t  a var ia t ion i n  entry 
velocity does not influence the convective heating ra tes  t o  as great an extent 
as the radiative heating rates .  This variation is, nonetheless, a significant 
influence since an increase of some 570 Btu/ft2-sec ( o r  over 300 percent) i s  
obtained f o r  an increase i n  entry velocity from 20 000 t o  32 000 fps  fo r  a cap- 
sule with % = 1 foot and -E = 1.0 slug/ft2. (See f ig .  18.) Again, note 

t h a t  the e f fec t  of 

entry-velocity reduction may be more advantageous than entry-corridor reduction 
beyond the  first large reduction from vert ical  entry t o  shallow entry. 
f igs .  17 and 18.) For instance, reducing the corridor from 10' t o  5 O  ( f ig .  17) 
reduces the maximum convective heating r a t e  from 403 t o  337 Btu/ft2-sec f o r  

= 1.0  slug/ft2 and RN = 1 foot.  However, the same resul t  can be obtained 

by an entry-velocity reduction of about 1400 fps. 
systems analysis is, of course, required. t o  determine which nethod d g h t  be the 
more a t t rac t ive .  

CDA 
i s  reduced by reducing the entry velocity. Also, 

CDA 

(See 

& 
(See f i g .  18.) A detai led 

l4axLmum heating loads w i l l  be obtained f o r  entry in to  model atmosphere 1 
For t h i s  since t h i s  atmosphere has the lowest value of the density gradient. 

reason, model atmosphere 1 is  the only atmosphere which i s  considered i n  the 
f G l l G V i i I g  diszussior; ~ G r ; Z Z r n * i ~ &  ~ ~ ~ ? i E t i m - ~ G i E t  heat. l O 8 . d .  

The t o t a l  radiat ive heating load i s  presented i n  figure 19 f o r  an entry 
veloci ty  of 26 000 fps  and for  both b a l l i s t i c  and l i f t i n g  vehicles. 
maximum heat loads were obtained for entry a t  the  overshoot boundary, only the 
overshoot and v e r t i c a l  entry cases are  shown. 

Since 

The major fac tor  influencing 



t 

VE, fps 

20 000 
26 ooo 
32 ooo 

t h e  radiative heat load, insofar as capsule design is  concerned, appears t o  be 
and not L/D. 

t he  vehicle L/D, a resul t  which i s  predominantly due t o  the difference i n  the 
overshoot entry angle. Note tha t  f o r  ve r t i ca l  entry, Q r  appears t o  be inde- 
pendent of L/D, at l eas t  t o  L/D = 0.7. 

Only relat ively minor effects a re  obtained by increasing 
cDAJ 

Values of Qr/Qc f o r  m/C$, 
slug/ft2, of - 

0. a 0.7 1.0 

0.04 0.05 0.06 
.12 15 19 
30 0 37 45 

The ef fec t  of entry velocity i s  very large, as indicated by figure 20, and 
the  variation i s  essent ia l ly  the same as tha t  obtained f o r  the  maximum heating 
rates .  

The convective heat loads presented i n  f igure 21 demonstrate a greater  
dependence on L/D than does the  radiative heat load.  Also, the heat loads 
a re  decreased t o  a greater  extent by the use of a ve r t i ca l  entry mode where 
L/D effects  appear t o  be negligible. 
load, the resu l t s  obtained f o r  
able only at the expense of increased heating ra tes  and deceleration loads. 

Though demonstrating a reduction i n  heat 
at  the overshoot boundary a re  avail-  L/D = 0.5 

The influence of entry velocity on the  convective heat loads i s  presented 
L/D = 0, and -rE = yo. A comparison of i n  figure 22 f o r  model atmosphere 1, 

figures 20 and 22 demonstrates the greater  dependence of 
velocity. 
f igures f o r  a b a l l i s t i c  vehicle w i t h  

Q1. on the entry 
The following table  presents a comparison of the r e su l t s  of these 

and f o r  several values of RN = 1 foot 
m - 

CDA' 

The e f fec t  of vehicle nose radius on the  stagnation-point heating loads 
f o r  a typical  b a l l i s t i c  vehicle with = 0.7 slug/ft2 i s  presented i n  the  

CDA 
following tab le  : 
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Values of G/Qc f o r  VE, 
fps, of - 

20 000 26 ooo 32 ooo 

0.0063 0.019 0.046 
0177 - 0537 .130 

.050 -152 .366 
9 50 

1414 .430 1 035 
50 

.40 1 215 2.93 
50 

ai. 231 
2,o 

a2. 21-5 

Values of Qr + Q, Btu/ft2, 
f o r  VE, f p s ,  of - 

20 000 26 ooo 32 ooo 

1 2  880 22 417 32 840 
9 210 16 405 23 075 
6 720 12 670 21 450 

a21 220 
5 165 11 120 22 600 

4 480 12  180 30 850 
all 100 

a4 462 
4.0 I a4.65 

aNose 
obtained. 

radius f o r  which minimum stagnation-point t o t a l  heat load i s  

Note tha t  the value of the  nose radius f o r  which the minimum t o t a l  heat 
load i s  obtained decreases with increasing ent,ry velocity ( the r a t i o  of 
t o  &c i s  always 0.30 f o r  the minimum t o t a l  heat load). Thus, it is  necessary 
t o  decrease the  vehicle nose radius i f  the  anticipated entry velocity i s  
increased f o r  a single value of It should be pointed out, however, t ha t  

t he  optimum conditions from the standpoint of stagnation-point heating are not 
necessarily t h e  conditions f o r  which minimum t o t a l  heat-shield weights are 
obtained. 

Qr 

2. 
CDA 

The aerodynamic heating is  strongly influenced by entry velocity, ba l l i s -  
t i c  parameter, model atmosphere, and entry angle. In  general, increasing - 
r e su l t s  i n  increased stagnation-point heating ra tes  and loads. 
terminal guidance t o  reduce the entry corridor i s  advantageous i n  reducing the 
m a x i m u m  stagnation-point heating rates, even though entry-velocity reduction 
may be a more effective means. I n  particular, the  use of shallow entry i s  of 
no advantage f o r  stagnation-point heat-load reduction, whereas entry-velocity 
reduction i s  most effective.  

m 
CDA 

The use of 

Communication Time 

The concept of a minimum mission type of Mars atmospheric probe allows the 
vehicle t o  be destroyed on impact. 
then be transmitted during the period between the cessation of blackout and 
impact (blackout ends at  about 10 000 fps) .  The time available fo r  t h i s  trans- 
mission of information i s  defined as the communication time and i s  presented i n  
f igures  23 t o  25. Several studies have considered t h i s  communication problem 
f o r  simple atmospheric probes. 
communication t i m e  should be adequate, whereas reference 12 indicates t ha t  
30 seconds or  more may be required t o  obtain a significant amount of informa- 
t ion .  

The information obtained during entry must 

Reference 2 indicates t ha t  about 15 seconds of 

Because of t h i s  uncertainty, it appears not unreasonable t o  assume tha t  



a communication time of 1 minute may be required f o r  the capsule t o  reestablish 
contact with the  fly-by bus and transmit the accumulated data. On t h i s  basis  
then, as shown i n  figure 23, the value of f o r  the entry capsule must be 

l e s s  than 0.2 slug/ft2 i f  the capsule i s  t o  be capable of ve r t i ca l  entry in to  
model atmospheres 3 and 4. 
gained i f  a terminal guidance capabili ty allows an entry corridor of 5 O .  For 
t he  worst atmosphere (model atmosphere 3 ) ,  a 1-minute communication time i s  
available f o r  a capsule with terminal guidance and with 

CDA 
A considerable increase i n  communication time i s  

= 1.0 slug/ft2. 
CDA 

The use of a capsule with a l i f t -drag r a t i o  of 0.7 a lso  gains an increase 
i n  communication time, as shown i n  figure 24. For ve r t i ca l  entry, a 1-minute 
communication time i s  available with = 0.36 slug/ft2 f o r  L/D = 0.5 as 

compared with = 0.18 f o r  L/D = 0. The increase i n  available time f o r  

comnica t ion  i s  even more pronounced f o r  shallow entry when detai led atmos- 
pheric measurements could be obtained and transmitted i n  r ea l  time. 

CDA 

CbA 

Since the capsule must decelerate t o  a velocity of about 10 000 fps  before 
communicating with the bus, the i n i t i a l  entry velocity has a re la t ive ly  minor 
influence on the  communication time. (See f ig .  23.) 

It i s  readily apparent from figures 23 t o  25 tha t  reasonable communication 
times need not require very low values of On the  contrary, a b a l l i s t i c  

CDA' 
vehicle u t i l i z ing  a terminal guidance system-capable of a 10' entry corridor 
can yield reasonable communication times with an 

(See f ig .  24.) A l i f t i n g  vehicle with L/D = 0.5 and = 0.36 slug/ft2, 

but without terminal guidance, i s  a l so  capable of achieving adequate comnica -  
t i on  t imes .  
the  f eas ib i l i t y  o r  des i rab i l i ty  of such approaches i n  comparison with the mini- 

of about 0.8 slug/ft2. 
CDA 

CDA 

These two approaches should be investigated fur ther  t o  determine 

m mum value of - CDA' 

Parachute Deployment 

A soft landing, which probably w i l l  require some type of parachute descent, 
i s  a desirable objective f o r  future missions. 
deployment conditions fo r  Mars entry vehicles were obtained and are  presented 
i n  figures 26 t o  28. 
which the parachute is  deployed i s  demonstrated i n  f igure 26 f o r  both ve r t i ca l  
and shallow entry and f o r  a vehicle veloci ty  of 1000 fps  at  deployment. 

For t h i s  reason, parachute- 

The effect  of t he  atmospheric model on the a l t i t ude  at  

For ver t i ca l  entry, parachute deployment i n  the two lower atmospheres, a t  
reasonable a l t i tudes  (greater  than or equal t o  20 000 f e e t )  requires very low 
values of 2 ( l e s s  than 0.2 slug/ft2). The densest atmosphere ra i ses  t h i s  

CDA 
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requirement s i g  n i f  i cant l y  . The alternative,  shallow entry with 

terminal guidance, resu l t s  i n  parachute deployment i n  the low-density atmos- 
phere at an a l t i t ude  of 20 000 fee t  with a of about 0.66 slug/ft2. A s  

expected, re la t ive ly  high values of - are feasible  if atmosphere 1 i s  

encountered. 

C D A  
CDA 

The influence of l i f t  i s  indicated i n  figure 27 f o r  two nominal parachute- 
deployment velocit ies,  1000 and 3000 fps, corresponding t o  Mach numbers of 
approximately 1 and 3, respectively. For ver t ica l  entry, it i s  seen tha t  the 
- requirement may be increased from 0.19 t o  0.3 slug/ft2 by the u t i l i za t ion  
CDA 
of a vehicle with 
20 000 f e e t  and a t  a velocity of 1000 fps. On the other hand, increasing the 
velocity a t  deployment t o  supersonic values also allows an increase i n  the  
maximum In  fact ,  an increase i n  parachute-deployment velocity t o  about 

3200 fps  i s  equivalent t o  an increase i n  
entry. 
vehicle. 
1000 f p s  i s  possible f o r  a l i f t i n g  vehicle with - x 0.9 slug/ft2, as com- 

pared with x 0.66 slug/ft2 f o r  the  b a l l i s t i c  vehicle. Note tha t  f o r  a 

supersonic parachute deployment a t  a velocity of about 3000 fps ,  the  deployment 
a l t i t ude  is  i n  excess of l 3 O  000 f ee t  f o r  the range of 

Parachute deployment at  such high a l t i tudes  might be desirable f o r  purposes of 
surface photography o r  extensive atmospheric sampling. 

L/D = 0.5 f o r  parachute deployment at  an a l t i t ude  of 

CDA' 
L/D 

Parachute deployment at  an a l t i tude  of 20 000 f e e t  and a velocity of 

from zero t o  0.5 f o r  ve r t i ca l  
For shallow entry, the l i f t i n g  vehicle i s  far superior t o  the b a l l i s t i c  

CbA 
CDA 

- considered here. 
CDA 

The ef fec t  of entry velocity on the  parachute-deployment conditions i s  
The greatest  effect  occurs at  re la t ive ly  minor, as indicated i n  figure 28. 

shallow entry angles f o r  which an increase i n  - of approximately 

0.09 s lug/f t2  may be obtained by reducing the entry velocity from 32 000 t o  

m 
CDA 

20 000 f p s .  

The advantages of terminal guidance and/or l i f t  are  shown t o  be pronounced 

The poss ib i l i ty  of trading lift t o  obtain increased parachute- 

approach f o r  soft-landing and appear t o  be more desirable than the low - 
missions. 
deployment ve loc i t ies  i s  also indicated. The des i rab i l i ty  of a l i f t i n g  vehicle 
with low parachute-deployment veloci t ies  as opposed t o  a b a l l i s t i c  vehicle with 
high-supersonic parachute-deployment velocit ies depends, t o  a great extent, on 

cate, however, the des i rab i l i ty  of more detailed systems studies of these 
approaches. 

m 
CDA 
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Relay Communication Between Fly-By Bus and Entry Capsule 

One major problem i n  relay comnica t ion  between the  entry capsule and the 

Obviously, some entry angle ex is t s  f o r  which the bus 
fly-by bus i s  t ha t  of maintaining a c lear  line-of-sight transmission l ink  
between the two vehicles. 
i s  on the horizon at the time of impact of the  capsule. Any increase i n  entry 
angle w i l l  then resul t  i n  an interruption i n  transmission pr ior  t o  the capsule 
impact. The l imiting entry angle can be expected t o  be great ly  influenced by a 
variation of the  t ra jectory parameters. 
has been determined fo r  the par t icular  case of an impacting atmospheric capsule 
with no terminal deceleration system. 

Thus, the effect  of such a variation 

Since the line-of-sight comnica t ion  problem i s  greatest  f o r  the condi- 
t i o n  of a maximum f l i gh t  time i n  the atmosphere, the emphasis i s  placed on entry 
in to  atmosphere 1 i n  t h i s  phase of the study. A s  shown i n  figure 29, f a i r l y  
long atmospheric f l i g h t  times can be obtained, par t icular ly  f o r  the lower values 
of - The sum of the f l i gh t  times of the capsule from bus-capsule separation 

CDA' 
t o  entry and from entry t o  impact then d i c t a t e  the location of the bus at impact 
of the  capsule. The procedure outlined i n  the analysis section of t h i s  report 
i s  then u t i l i zed  t o  define the "limiting" condition. 

A shallow entry angle actually presents l i t t l e  problem i n  communication 

Steep entry would be expected t o  be somewhat more of a problem, 
line-of-sight maintenance since the capsule i s  on the  same side of the planet 
as the bus. 
however, as may be seen i n  the sketch i n  f igure 30. 
of e i ther  an increase i n  the capsule separation velocity o r  a reduction i n  the  
bus velocity on the l i m i t i n g  entry angle f o r  line-of-sight comnica t ion  t o  
capsule impact i s  demonstrated. The region t o  the l e f t  of any curve i s  avail-  
able f o r  c lear  line-of-sight comnica t ion  t o  capsule impact. 
t o  the  right of any curve, communication is  blocked by the Martian horizon 
pr ior  t o  impact. 
separation velocity, the l imiting entry angle i s  denoted by the minimum AVs,c 
curve and var ies  from -630 t o  -930 f o r  the range of - considered. The 

numerical values of t h i s  minimum AVs,c curve are  obtained d i rec t ly  from f ig-  
ure 8 for  a value of 
entry angle limited by relay communication may be increased by e i ther  increasing 
the separation-velocity increment applied t o  the  entry capsule above the minimum 
t o  achieve a given entry angle o r  by applying a propulsive velocity decrement 
Avs, b 

I n  t h i s  figure, the effect  

I n  the region 

For relay communication at  the  point of impact w i t h  minimum 

m 
CDA 

As of 90° and a re  shown i n  the inser t  of f igure 30. The 

t o  the bus i n  addition t o  the minimum capsule separation velocity.  

The increase i n  AVs,c t o  achieve an increased communication capabili ty 
i s  denoted by l i nes  of constant AV,,.. A t  the  intersect ion of a constant 

curve with the m i n i m  AVs,c curve, t he  actual  minimum AVs,c i s  given 
m 

0.25, (AVs ,C)dn  = 1-75 fPs)* 

I n  comparing the two methods f o r  increasing the communication time and, 
therefore, the entry angle available f o r  the  relay-communication mission, it 
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appears t o  be more eff ic ient ,  i n  terms of the velocity increment, t o  increase 
Ab, c rather than t o  apply a velocity decrement AVs,b t o  the bus. For 

instance, at  of -50 fps  increases t h e  

available entry angle f o r  which line-of-sight communication i s  possible u n t i l  
the  point of capsule impact from - 7 3 O  t o  -91°. The same resu l t  i s  obtained by 
increasing the capsule separation velocity AV,,, t o  about 200 fps. The mini- 
mum AVS,c curve indicates t ha t  a AVsYc of l9O fps  i s  required t o  achieve a 
-goo entry angle without regard t o  the communication problem. Thus, the 
separation-velocity increment i s  increased by about 10 fps  above the  m i n i m  
f o r  -900 entry o r  about 37 fps  above the minimum fo r  a -720 entry. 
basis, increased AV,, 
fly-by bus. 

= 0.15 slug/ft2, applyin@; a AVs,b 
CDA 

On t h i s  
i s  def ini te ly  superior t o  applying retrothrust  t o  the 

It should a l so  be noted tha t  there i s  only a small influence of 
on the AVsYc required t o  achieve line-of-sight relay communication. 

CDA 

Atmosphere 1 i s  the  worst atmoa2here from the  communications standpoint, 
as i s  demonstrated i n  figure 31 i n  which atmospheres 1 and 4 are  compared f o r  
the nominal conditions and suff ic ient  separation velocity t o  achieve the speci- 
f i ed  entry angle only. 

It might be anticipated tha t  a reduction i n  the distance between Mars and 
the spacecraft at the t i m e  of separation would somewhat a l lev ia te  t he  line-of- 
sight problem. This i s  not the case, however, as may be seen from figure 32. 
Here, only a 2' increase i n  entry angle i s  obtained by a reduction i n  separa- 
t i o n  distance from TOO t o  50 Mars rad i i .  On the other hand, the influence of 
the  bus periapsis distance i s  shown i n  f i g u r e  33, t o  be most profound. 
t h a t  close passage t o  the  planet great ly  increases the communications problem. 
Thus, select ion of the  proper range of periapsis distances can reduce the prob- 
lem of relay line-of-sight communications. Such gains a re  obtained, however, 
at the  expense of an increased separation velocity, as was shown by figure 6. 

Note 

Figure 33 indicates t ha t  f o r  = 0.2 slug/ft2 an increase i n  the l i m i t i n g  
CDA 

entry angle from -780 t o  -85.50 causes an increase i n  the periapsis distance of 
2 Mars radii. This same increase i n  periapsis distance i s  shown i n  f igure 6 t o  
require an increase i n  the separation velocity of 135 fps  t o  maintain the same 
entry angle. Figure 30, however, demonstrates t ha t  the  l imiting entry angle 
f o r  which re lay  communication from bus t o  capsule a t  impact i s  available can be 
increased f r D m  -780 t o  -900 for  an increase i n  AVs,c 
above the  minimum required for  ve r t i ca l  entry. Thus, velocity addition t o  the 
capsule i s  far superior t o  variations i n  spacecraft posit ion insofar as gaining 
an increase i n  the  entry-angle range available f o r  line-of-sight comnica t ion  
between the capsule and the fly-by bus i s  concerned. 

of only about 10 fps  

The effect r\f E r&..rt.inn i n  t.he hyperbolic excess velocity i s  shown i n  
f igure 34 t o  increase the l imiting entry angle f o r  line-of-sight communication. 
Of course, a reduction i n  V, or  VE was shown i n  figure 7 t o  reduce the  
separation veloci ty  required t o  achieve a specific entry angle. A reduction i n  
the  hyperbolic excess velocity may then be one means of resolving the  relay- 
communication problem. This parameter i s  dependent on the  interplanetary 
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trajectory,  however, and i s  not l i k e l y  t o  be varied simply t o  achieve a s m a l l  
reduction i n  separation velocity.  

The separation angles presented i n  figure 35 are t h e  angles required t o  
achieve a specified entry angle at  the  separation veloci t ies  AVs,c of f ig -  
ure 30. Thus, t h e  resu l t s  of f igure 35 are essent ia l ly  the  same as those of 
f igure 30 and may be compared d i r ec t ly  with the  results of f igure 8. The point 
t o  be m a d e  here i s  tha t  an increase i n  As 

m relay communication f o r  entry angles from -100 t o  -900 f o r  t he  range of - 
CDA 

considered. The penalty i n  NS,, which corresponds t o  t h i s  change i n  As 
may be seen from f igure 30 t o  be s m a l l  (less than 15 fps )  i f  a -900 entry angle 
i s  required. 

of only 200 i s  required t o  insure 

One of t he  resu l t s  of the  entry analysis phase of t h i s  study w a s  t h a t  t he  
use of an entry capsule with might a l l ev ia t e  some of t h e  problems 
of entry. Figure 36 presents a comparison of t he  b a l l i s t i c  and l i f t ing  vehic- 
l e s  i n  terms of t h e  line-of-sight communication requirements. Since a vehicle 
with takes considerably longer t o  penetrate t he  atmosphere than a 
b a l l i s t i c  vehicle ( f ig .  29), t he  l imit ing entry angle f o r  which line-of-sight 
communication i s  possible would be expected t o  be somewhat less f o r  t h e  l i f t i n g  
vehicle. A s  shown i n  f igure 36, an increase i n  the  separation veloci ty  of less 
than about 15 fps  above t h a t  required f o r  b a l l i s t i c  entry i s  required, at t h e  
same conditions, f o r  t he  vehicle with It was pointed out pre- 
viously, however, t h a t  t he  l i f t i n g  capsule could u t i l i z e  a higher value of 

than the b a l l i s t i c  capsule f o r  t he  same entry requirements. For instance, at 
an entry angle of -goo, a b a l l i s t i c  capsule requires a m a x i m u m  value of 

of 0.16 slug/ft2 t o  a t t a i n  a 60-second communication t i m e ,  as opposed t o  a value 
of 0.36 slug/ft2 f o r  t he  L/D = 0.5 capsule. (See f i g .  24.) A comparison of 
these two vehicles i n  f igure 36 indicates t h a t  the  m a x i m u m  entry angle f o r  which 
the  two capsules can enter  t he  atmosphere and communicate with the  fly-by bus 
t o  impact i s  essent ia l ly  the  same f o r  t he  same value of separation velocity.  
Thus, t h i s  aspect of t h e  problem can be neglected i n  comparisons of t he  merits 
of a b a l l i s t i c  vehicle and a vehicle with 

L/D = 0.7 

L/D = 0.5 

m - L/D = 0.5. 

CDA 

m - 
CDA 

L/D = 0.5. 

APPLICATIONS TO ENTRY CAPSULE DESIGN 

Design of  an entry capsule f o r  an unmanned Mars mission first requires a 
def ini t ion of mission objectives followed by a def in i t ion  of mission r e s t r i c -  
t ions.  The basic mission may require e i t h e r  a hard o r  a so f t  landing with 
e i the r  direct  o r  re lay communication with Earth. O f  primary importance t o  the  
entry capsule design a re  t h e  r e s t r i c t ions  on the  charac te r i s t ics  Of t he  entry 
capsule tha t  a r e  imposed by the  presence of t he  Martian atmosphere i n  combina- 
t i o n  w i t h  the  interplanetary navigation and guidance e r rors  which d i c t a t e  the  
a r r i v a l  window at Mars. 
design i s  t he  s i ze  and weight l imi ta t ion  imposed by t h e  capabi l i ty  Of t he  launch 
vehicle. 

Another primary r e s t r i c t ion  placed on the  capsule 
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m - It has been shown i n  figures 23 t o  28 that  t he  b a l l i s t i c  parameter 
CDA 

i s  of c r i t i c a l  importance from the  standpoint of communication f o r  a hard- 
landing mlssion and of parachute deployment for a soft-landing mission. 
s ize  and welght res t r ic t ions  are presented i n  f igure 37 i n  terms of the  ballis- 
t i c  parameter f o r  the  range of currently envisioned boosters which might be 
applicable t o  unmanned Mars missions. A diameter of 20 feet, the maximum indi- 
cated, would be approximately comparable t o  a Saturn c lass  of launch vehicle. 
An Atlas-Centaur launch system would allow a m a x i m u m  vehicle diameter of 
s l i gh t ly  less than 10 feet, and the  Atlas-Agena D system, about 6 feet .  
mum payload capabili ty placed on a Mars encounter t ra jec tory  i s  on the  order 
of 1300 pounds f o r  t he  Centaur system and about 600 pounds f o r  t h e  Agena system. 

The 

Maxi- 

The r e su l t s  of the  present study ( f ig .  24) indicate tha t ,  f o r  b a l l i s t i c  

f o r  t he  entry capsule must be of the order of 0.2 s lug/f t2  o r  less 
entry with no terminal guidance capability, and a 1-minute communication t i m e ,  
the  

f o r  e i the r  h a d -  o r  soft-landing missions without supersonic parachute deploy- 
ment. 
weight i s  r e s t r i c t ed  t o  less than about 600 pounds f o r  t h e  Centaur system and 
less than about 200 pounds f o r  the  Agena system. 

CDA 

For t h i s  value of t he  b a l l i s t i c  parameter, t he  m a x i m u m  entry-capsule 

I n  comparison, a l i f t ing vehicle (L/D = 0.5) was shown t o  require a value 

Figure 37 indicates t ha t  essent ia l ly  a l l  the  Agena o r  Centaur 
of t he  b a l l i s t i c  parameter of 0.3 slug/ft2 or less from parachute deployment 
considerations. 
capabi l i ty  could be u t i l i zed  f o r  the  entry capsule i f  the  

increased t o  0.3 slug/ft2. 
t h e  use of t h e  l i f t ing-vehicle  concept. 

could be 
CDA 

Thus, large gains appear t o  be available through 

The r e su l t s  of t he  Advanced Mariner and Voyager studies indicate  t h a t  
these weights a re  possibly adequate f o r  early unmanned Mars missions. 
f o r  sophisticated unmanned missions, such as the  landing of an automated bio- 
l og ica l  laboratory of t he  order of 5000 pounds, some type of terminal guidance 
appears t o  be required. This terminal guidance i s  necessary since, even with 
L/D = 0.5 and a Saturn-class launch vehicle, t h e  m a x i m u m  entry-vehicle weight 
would be of t h e  order of 4000 pounds f o r  ve r t i ca l  entry. 

However, 

Another point i n  favor of t he  development of a terminal guidance system 
~ ( o r  u t i l i za t io r ,  of a l i f t i n g  vehicle) i s  tha t  a very low value of - i s  

ra ther  d i f f i c u l t  t o  achieve with any significant payload-ratio capabili ty.  
Thus, a new vehicle concept mst be conceived and developed i f  b a l l i s t i c  entry 
without te rmins l  guidance i s  accepted. 
such as the  Apollo configuration, o r  blunted cones, could be u t i l i z e d  f o r  ear ly  
Mars missions if a terminal guidance capability were t o  be developed or  if 
aerodynamic lift were u t i l i zed .  

CDA 

On the other hand, well-developed shapes 

Three general  classes of entry vehicles may therefore be considered f o r  
unmanned Mars missions: b a l l i s t i c  vehicles, l i f t i n g  vehicles, and vehicles 
with terminal guidance. Two of these, a b a l l i s t i c  vehicle without terminal 
guidance and a b a l l i s t i c  vehicle with terminal guidance, were compared on the  



bas is  of t h e  design requirements of t he  entry vehicle f o r  a typ ica l  unmanned 
Mars mission. The typ ica l  mission selected f o r  study requires: 

(1) A sof t  landing 

(2)  Up t o  1 hour of surface operation a f t e r  landing 

( 3 )  Relay communication t o  Earth by way of a fly-by bus 

( 4 )  Compatibility with the  Atlas-Centaur launch system 

Parachute deployment i s  designed t o  occur i n  atmosphere 4 ( the  worst case) 
It is  assumed t h a t  the 

I n  

at  an a l t i tude  of 15 000 feet and a Mach number of 0.9. 
vehicle is  decelerated t o  a velocity of 150 f p s  by parachute and i s  provided 
with retro-rockets t o  remove the  residual velocity ju s t  p r ior  t o  touchdown. 
addition, t he  vehicle with terminal guidance i s  assumed t o  have an entry cor- 
r idor  width of loo. 

On the  basis  of these res t r ic t ions  it was found t h a t  the  b a l l i s t i c  vehicle 
with terminal guidance could be designed f o r  an 

The actual value used i n  the  calculations was 0.40 slug/ft2, however, i n  order 
t o  reduce the  stagnation-point heating loads and a l so  t o  prevent the  payload 
weight from exceeding the  Centaur's capability, while t he  m a x i m u m  available 
entry-vehicle diameter was maintained. 

of about 0.50 slug/ft2. CDA 

The b a l l i s t i c  vehicle without terminal guidance must be designed f o r  a 
value of of 0.18 slug/ft2 o r  less. 

calculations t o  obtain the  best  possible payload r a t io .  

The maxim value was chosen f o r  t h e  CDA 

The velocity required at  separation of t he  bus and entry capsule t o  insure 
line-of-sight re lay communication after impact i s  presented i n  f igure  38 f o r  
t he  two vehicles considered. 
24 minutes of surface operation i s  avai lable  without any increase i n  separation 
velocity. 
t o t a l  separation veloci ty  increment of 275 fps, an increase of 160 fps  over t h e  
minimum. 
required simply t o  assure entry over t he  required range of entry angle. Note 
t h a t  t h i s  vehicle has a surface operational l i fe t ime of only 6 minutes f o r  a 
t o t a l  separation-velocity increment of 275 fps,  which provided a 1-hour l i f e -  
t i m e  for t h e  vehicle with terminal guidance. 
on t h e  surface, a separation veloci ty  of 680 f p s  i s  required. Thus, a t o t a l  
veloci ty  saving of 405 f p s  i s  possible by t h e  use of terminal guidance. 
realized, of course, t h a t  t he  trade-off between the  weights of t he  propulsion 
system and the  terminal guidance system must be considered. 
point is, however, t h a t  a heavier payload with a more conventional shape may be 
landed i n  a smaller ta rge t  area if terminal guidance i s  u t i l i zed .  
a l so  be pointed out t h a t  the use of a l i f t ing-vehicle  system without terminal 
guidance would y ie ld  a s ignif icant  increase i n  landed payload when compared 
with the  b a l l i s t i c  system without terminal guidance. I n  addition, many 

For the  vehicle with terminal guidance, up t o  

One hour of surface operation i s  available t o  t h i s  vehicle f o r  a 

For the  vehicle with no terminal guidance, a large veloci ty  is  

For a 1-hour operational l i fe t ime 

It i s  

The important 

It should 
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advantages may be foreseen f o r  the combination of a terminal guidance capabil- 
i t y  with a vehicle having a controllable-lif t  capabili ty.  

CONCLUDING REMARKS 

An unmanned b a l l i s t i c  entry vehicle capable of communication with the 
Earth between blackout and Mars impact or a vehicle capable of a so f t  landing 
with parachute deployment veloci t ies  of 1000 fps  or  l e s s  has been shown t o  
require a value of the  b a l l i s t i c  parameter of l e s s  than 0.2 slug/ft2 i f  a 
ve r t i ca l  entry capabili ty i s  required. 
l i f t -drag  capabili ty of 0.5 was shown t o  allow a significant increase i n  t h i s  
requirement t o  values of the  b a l l i s t i c  parameter of about 0.3 slug/ft2. If a 
terminal guidance system i s  available fo r  such missions, it may be possible t o  
extend the maximum allowable values of the b a l l i s t i c  parameter t o  about 0.66 
and 0.9 slug/ft2 f o r  b a l l i s t i c  and l i f t i n g  vehicles, respectively. 

The u t i l i za t ion  of a vehicle with a 

On the  basis  of t he  present stagnation-point heating analysis, convective 
heating appears t o  be the  dominant heating mode a t  the  entry veloci t ies  asso- 
ciated with unmanned missions. 

The problem of communication between the fly-by bus and the capsule was 
shown t o  be minimized i f  shallow entry angles a re  u t i l i zed .  
hyperbolic excess velocity, bus-capsule Separation at m a x i m u m  distances from 
t h e  planet, and application of the separa t ion  thrus t  at essent ia l ly  right 
angles t o  the f l i g h t  path appear t o  be desirable. 

Also, minimum 

The comparison of two b a l l i s t i c  vehicles, one without terminal guidance 
and one with terminal guidance, indicates t h a t  a 1-hour surface operation with 
a line-of-sight relay-comnications l i nk  can be obtained f o r  t he  terminally 
guided vehicle at the same cost i n  separation velocity as a 6-minute surface 
operation f o r  the  vertical-entry vehicle. 

On the basis  of the  results of t he  present report, the  use of a b a l l i s t i c  
vehicle with a terminal guidance capability, a l i f t i n g  vehicle, o r  a combina- 
t i o n  of both concepts appears t o  be superior f o r  early unmanned missions t o  
Mars t o  the  use of a vehicle with a low ballistic-parameter value without 
terminal guidance. 
more detailed,  investigation. 

It i s  believed tha t  these concepts therefore merit further, 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., February 1, 1963. 
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APPENDIX 

HYPERBOLIC EQUATIONS 

Bus T r a  j e c t  ory 

For t ra jec tor ies  confined t o  the encounter of a planet, a two-body analysis 
can be performed. The planet i s  considered the  central  force, and a l l  other 
perturbing effects  are  neglected as a vehicle approaches the planet. 
hyperbolic equations required t o  define the character is t ics  of these t ra jec-  
t o r i e s  have been developed ( r e f .  5 ) ,  hence they w i l l  be presented here with a 
minimum of description. 

The 

Periapsis velocity of the  bus: 

26 

Semima j o r  axis : 

Semilatus rectum: 

Eccentricity: 

Local velocity: 

a =  prP 
rpvp2 - 2p 

Flight-path angle: 

1 + e cos e 
+ 2e cos 8 + e2 

r = cos- 

Orbital central  angle: 

8 = cos-1 P ( e; r, 



~ APPEMIIX 

I 
I Time from periapsis passage: 

For convenience, the reference point of time was transferred from the periapsis 
point t o  the bus-capsule separation point. 

Capsule Trajectory 

A t  some distance from Mars it has been assumed tha t  a capsule w i l l  be 
separated from a fly-by bus and w i l l  enter  the Martian atmosphere as i l l u s t r a t ed  
i n  figure 1. 
type of vehicle have been calculated through the use of the  following equations. 

Some of the possible hyperbolic encounter t r a j ec to r i e s  f o r t h i s  

Capsule entry velocity: 

Semima j o r  axis : 

Semilatus rectum: 

rE2vE2co s %E 
CL P =  

Periapsis distance : 

The eccentricity,  l oca l  velocity, and flight-path angle f o r  the capsule were 
obtained from the  general equations (Ah)  t o  (A6) .  The o rb i t a l  central  angle 
f o r  t he  capsule w a s  calculated from equation (A7) .  
t ransferred t o  the bus periapsis radius. 

The reference axis was then 

The elapsed time of t r ave l  of the capsule from separation t o  the edge of 
the Martian atmosphere w a s  determined by u t i l i z ing  equation ( A 8 ) ,  except f o r  
TE = -goo f o r  which equation (A8) becomes indeterminant (since e = 1). For 
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t h i s  case, the  required expression for  time, measured from separation, i s  
eas i ly  obtained since the centrifugal forces a re  zero: 

L 4 

The velocity increment required t o  separate the entry capsule from the  
fly-by bus i s  

2 2 
A v ~ , c  = iVs,b + vs,c - as ,bvs ,c  cos Ars 

where 

applied is determined from 
&s = rs ,c  - rs,b '  The angle at which t h i s  velocity increment i s  

It should be noted tha t  f o r  cases i n  which 
of the capsule at separation was calculated instead of using t h i s  velocity as 

As = goo, the  resultant velocity 

a given condition. I n  t h i s  case, the expression used t o  calculate Vs,c i s  

28 
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Equation ( ~ 1 6 )  i s  based on equation (A9)  and the  iden t i ty  

I$~E*cos+E = rs2vs, c2cos2y s> c 

as well as the  fundamental relationships of a r igh t  t r iangle .  
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Figure 1.- Relative posi t ion of bus and capsule a t  separation and a t  encounter of Mars. 
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Figure 2.- Typical Mars entry ve loc i t ies .  
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(a) Density profile. 

Figure 3.- Proposed NASA Mars model atmospheres. 
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Figure 3.- Concluded. 
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Figure 5.- Effect of separation distance on separation velocity.  V, = 20 323 fps; 
As = 900; rp,b = 2.5 Mars radii (Mars radius = 21-13 i n t .  s t a t u t e  miles).  
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Figure 6.- Effect of bus per iapsis  distance on separation velocity. V, = 20 323 fps; 
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Figure 10.- Effect of atmospheric model on maximum deceleration loads for steep and shallow 
entry.  L/D = 0; VE = 26 OOO fps. (To = Overshoot boundary; see fig. 9.) 
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Figure 11.- Effect of l i f t  on maxim deceleration loads  f o r  steep and shallow entry i n  
model atmosphere 4 at VE = 26 000 fps. (yo = Overshoot boundary; see f ig .  9 . )  
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Figure 12.- Effect of entry velocity on maximum deceleration loads i n  model atmosphere 4. 
L/D = 0; -r, = ro + 100. 
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Figure 13.- Effect of atmospheric model on maximum radiat ive heating r a t e s  fo r  Steep and 
sha,llow entry. L/D = 0; VE = 26 000 fps. (To = Overshoot boundary; see fig. 9 . )  
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Figure 14.- Effect of lift on maximum radiative heating r a t e s  f o r  steep and shallow entry 
i n  model atmosphere 4 at VE = 26 888 fpa .  (70 = CETershQo~ h m x d h r y ;  see f i g .  9.)  
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Figure 15.- Effect of entry velocity on m a x i m  radiat ive heating rates  i n  model atmos- 
phere 4. L/D = 0; -rE = yo + loo. 
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shallow entry. L/D = 0; VE = 26 000 fps .  (To = Overshoot boundary; see f ig .  9.) 
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atmosphere 1 at VE = 26 000 fps. (yo = Overshoot boundary; see f i g .  9.) 
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Figure 21.- Effect of lift on convective heating load f o r  steep and shallow entry in model 
atmosphere 1 at  VE = 26 000 f p s .  (To = Overshoot boundary; see f ig .  9.) 
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Figure 22.- Effect of en t ry  veloci ty  on convective heating load f o r  en t ry  a t  overshoot 
boundary i n  model atmosphere 1. L/D = 0. 
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Figure 23.- Effect of atmospheric model on communication time for an atmospheric probe. 
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Figure 26.- Effect of atmospheric model on parachute deployment a l t i t ude  for steep and shal- 
low entry. 
f ig .  9.) 

L/D = 0; V d  = 1000 0 s ;  VE = 26 000 fps. (yo = Overshoot boundary; see 
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Figure 28.- Effect of entry velocity on parachute deployment a l t i tude  f o r  steep and shallow 
entry i n  model atmosphere 4. Vd c IC!% fp; L/D = 0. (ro = Overshoot boundary; see 
f ig .  9.) 
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Figure 29.- Elapsed time from entry into model atmosphere 1 to impact. VE = 26 000 fps. 
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Figure 32.- Effect of separation distance on line-of-sight communication requirements 
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Figure 33.- Effect of bus periapsis distance on line-of-sight communication requirements 
at impact for m d e l  atmosphere 1. 
(VE = 26 000 0 s ) ;  As = 90°. 

L/D = 0; rs = 300 Mars radii; V, = 20 323 f'ps 
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Figure 34.- Effect of hyperbolic excess velocity on line-of-sight comunication requirements 
at impact for model atmosphere 1. 
As = go0. 
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35.- Effect of separation angle on line-of-sight communication requirements at 
impact for m d e l  atmosphere 1. 
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Figure 37.- Typical effects of weight and size on ballistic parameter. CD = 1.5. 
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